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Consonant confusions in white noise
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The classic �MN55� confusion matrix experiment �16 consonants, white noise masker� was repeated
by using computerized procedures, similar to those of Phatak and Allen �2007�. �“Consonant and
vowel confusions in speech-weighted noise,” J. Acoust. Soc. Am. 121, 2312–2316�. The consonant
scores in white noise can be categorized in three sets: low-error set �/m/, /n/�, average-error set
�/p/, /t/, /k/, /s/, /b/, /d/, /g/, /z/, /c/�, and high-error set �/f/, /�/, /b/, /v/, /ð/�. The consonant
confusions match those from MN55, except for the highly asymmetric voicing confusions of
fricatives, biased in favor of voiced consonants. Masking noise cannot only reduce the recognition
of a consonant, but also perceptually morph it into another consonant. There is a significant and
systematic variability in the scores and confusion patterns of different utterances of the same
consonant, which can be characterized as �a� confusion heterogeneity, where the competitors in the
confusion groups of a consonant vary, and �b� threshold variability, where confusion threshold �i.e.,
signal-to-noise ratio �SNR� and score at which the confusion group is formed� varies. The average
consonant error and errors for most of the individual consonants and consonant sets can be
approximated as exponential functions of the articulation index �AI�. An AI that is based on the
peak-to-rms ratios of speech can explain the SNR differences across experiments.
© 2008 Acoustical Society of America. �DOI: 10.1121/1.2913251�

PACS number�s�: 43.71.An, 43.71.Es, 43.66.Dc, 43.72.Dv �MSS� Pages: 1220–1233
I. INTRODUCTION

Masking experiments play a crucial role in understand-
ing the perceptual features of elemental speech sounds.
Masking one or more of these features, defined as events,
leads to a perceptual confusion �Régnier and Allen, 2008�.
Events are different from, though related to, other commonly
used categories of speech features such as articulatory fea-
tures �place, manner, etc.� or acoustic features �spectrum,
temporal modulations, etc.�. These features, which are ex-
tracted from the signal by auditory system, form the basis for
perception of different speech sounds. Events, and their
acoustic correlates, can be identified by directly comparing
the perceptual confusions with the corresponding masked
speech stimuli, on an utterance by utterance basis �Régnier
and Allen, 2008�. Such comparisons require a quantitative
analysis of both the perceptual confusions and the speech
stimuli.

We use the confusion matrix �CM�, which is an impor-
tant analytical tool for quantifying the results of closed-set
recognition tasks, to characterize the nature of perceptual
confusions �Allen, 2005a�. The classic Miller and Nicely
�1955� �MN55� study, which used CMs for measuring con-
sonant confusions for noise-masked and filtered speech, has
inspired many subsequent noise-masking CM experiments
�Wang and Bilger, 1973�; Dubno and Levitt, 1981; Gordon-
Salant, 1985; Grant and Walden, 1996; Sroka and Braida,
2005�. Phatak and Allen �2007� �denoted here as PA071� used
confusion patterns and confusion thresholds, first defined by
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Allen �2005b�, in a quantitative analysis of the CM. PA07
employed large numbers of talkers and listeners to take ad-
vantage of the large natural variability in speech production
and perception. Many questions raised in PA07 remained
open due to large dimensionality �16C�4V�18talkers
�10listeners�6SNR� and relatively low CM row sums �N�.
For example, are the differences between PA07 and MN55,
such as the asymmetric voicing confusions of PA07 solely
due to different noise spectra or due to procedural differ-
ences? Are talker and listener variations in perceptual confu-
sions systematic or random? Do these variations, if present,
correlate with the variations in speech stimuli?

To answer these and other outstanding questions, a CM
experiment was conducted by using procedures similar to
PA07, but with a white noise masker, as in MN55. We will
refer to this experiment as MN05. One of the main purposes
MN05 was to to verify whether the results of the classic
MN55 study can be reproduced, which can be considered a
validation of the PA07 procedures. To achieve this, the pro-
cedures of MN05 were designed to match as close as pos-
sible to MN55 procedures by making the least possible
changes to PA07 procedures. A three-way comparison among
MN55, MN05, and PA07 will let us estimate the effect of the
noise spectrum on consonant perception by ruling out the
effects of procedural differences, such as the use of recorded
speech stimuli, male talkers, digital filters, and computerized
presentations. Table I lists the relevant details of the three
experiments.

The MN05 data also allows analyses that were not pos-
sible with MN55 or PA07 data. For example, unlike MN55
the speech stimuli are now available in MN05 to compare

with the consonant confusions in white noise �WN�. Such
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correlations are crucial in establishing the noise-robust
acoustic correlates of the perceptual features of speech
�Régnier, 2007�. Furthermore, the MN55 data were pooled
over listeners and talkers, which averages out the possible
talker and listener variations that are important for finding
noise-robust features. Phatak and Allen �2007� also showed
that the articulation index �AI�, based on the peak-to-rms
ratios of the speech corpus, can be used to parametrize con-
sonant errors. Such analysis can be tested for WN with the
present experimental data, but not with the masking data of
MN55 due to unavailability of the stimuli.

The long-term goal of our studies is to determine the
noise-robust features of basic speech sounds. PA07 and
MN05 are the first two experiments in a series of data-
collection experiments intended toward achieving this goal.
Identifying the perceptual features quantitatively requires
comparing the perceptual data collected in these experiments
with the corresponding stimuli �Régnier and Allen �2008��.
This paper presents ways to quantify the perceptual data,
which is the first step toward such comparisons.

II. METHODS

The testing procedures from the study of PA07 were
modified to optimally match the methods of MN55. The
speech stimuli were CV syllables with the 16 MN55 conso-
nants followed by vowel /Ä/, from the LDC2005S22 corpus
�Fousek et al., 2004�. The syllables used in this study were
spoken in isolation by 18 talkers �ten males and eight fe-
male�. All talkers were native speakers of U.S. English, but
three talkers were bilingual and had a part of their upbring-
ing outside the U.S./Canada. MN55 used only female sub-
jects, with one serving as talker, while the other four served
as listeners. Since no significant talker-gender differences
were observed by PA07, both male and female talkers were
used in MN05.

The CV tokens were normalized such that each talker
had the same average rms level. Random WN was added to
the speech at five different signal-to-noise ratios �SNRs�,
viz., −12, −6, 0, 6, and 12 dB. When a listener had consonant
scores significantly above chance level at −12 dB, then those
consonants were presented to that listener at −15 dB, and
again at −18 and −21 dB SNRs, if required. Data indicate
that all listeners reached −15 and −18 dB SNRs, but rarely
reached −21 dB SNR. The SNR was set for each token by
using VUSOFT, a software VUmeter �Lobdell and Allen,
2007�. The peak value of the VUSOFT output was used to
define the speech level for each CV syllable. The speech and
noise were filtered to have a bandwidth of 200–6500 Hz to

TABLE I. Experimental details for Miller and Nicely
current experiment �MN05�. The details include num
talkers �T�, noise spectrum, and the speech database

Experiment C V T

MN55 16 1 5
PA07 16 4 18
MN05 16 1 18
match that in the MN55 experiment. Additionally, the CVs
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were presented in the quiet condition �i.e., no noise masker�
as a control condition.

The stimuli were diotically presented to listeners
through headphones �Sennheiser HD280�. The listener re-
ported the heard sound by clicking the appropriate choice on
a computer screen. Unlike PA07, MN05 did not involve
vowel recognition. Therefore, the MATLAB graphic user inter-
face used in PA07 was modified to provide only 16 conso-
nant choices. Consistent with MN55, presentations were ran-
domized over consonants, but not over talkers or SNR. Thus,
18 CVs spoken by the same talker were successively pre-
sented at a fixed SNR. The set of 18 CVs for each talker
consisted of 16 possible CVs, plus two of those randomly
chosen, to limit the possibility of guessing by listener. The
talker and the SNR for the next block of trials were then
randomly chosen.

24 listeners �16 males and 8 females� having English as
their primary language completed the experiment. The listen-
ers were normal-hearing adults with no history of hearing
problems. Three listeners had ages of 36, 45, and 50 years,
while the remaining listeners were in the age group of
18–28 years ��=21.57 yr, �=2.32 yr�. 21 listeners were
born and broughtup in U.S. and self-reported to have a mid-
western accent. The remaining three listeners had a part of
their upbringing in India, South Korea, and China and re-
ported to have South Asian, Southern U.S., and Chinese ac-
cents, respectively. However, no significant differences were
observed in consonant scores and confusions of these three
listeners and those of other listeners, and hence their re-
sponses were included. Each listener was trained for about
1 h in the quiet condition with visual feedback.

III. RESULTS

A. Listener and utterance selection

By following the analysis method of PA07, a post-hoc
listener and utterance selection were carried out on the data
of MN05. Listener selection is necessary to ensure that the
listeners are attending to the task and that their scores are
comparable to that of an average normal listener. The utter-
ance selection is required to avoid misinterpreting errors due
to mislabeled or mispronounced utterances as noise-induced
confusions. The error thresholds used for this selection were
same as those used in PA07.

23 of the 24 listeners had scores greater than 85% in the
quiet condition and formed a homogeneous group ��
=92.4%, �=3.5%�. The responses of the one low-
performance listener, who had 78.8% score in quiet, were

5� �MN55�, Phatak and Allen �2007� �PA07�, and the
f consonants �C�, number of vowels �V�, number of
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Based on the responses of the final set of 23 listeners,
the syllable error for each utterance, which is same as the
consonant error in this case, was estimated in the quiet con-
dition. 32 of the total of 286 utterances had more than 20%
error in quiet and were therefore considered as “ambiguous”
utterances. Accordingly, the responses to these utterances
were removed from the database. Following this utterance
selection, the one low-performance listener had a score of
83.8%, while all other listeners formed a tight group with
mean score of 97.9% and standard deviation of 1.2%. Thus,
the listener categorization was verified to be unaffected by
the utterance selection.

B. Consonant Errors

Figure 1 shows the consonant errors Pe�SNR�=1
− Pc�SNR� as a function of SNR. These curves can be cat-
egorized into three sets—a low-error �LE� set �/m/, /n/�, an
average-error �AE� set �/p/, /t/, /k/, /s/, /b/, /d/, /g/, /z/, /c/�,
and a high-error �HE� set �/f/, /�/, /b/, /v/, /ð/�. These three
sets are different from the three consonant sets observed in
PA07, due to different noise spectra. The HE set C1
= �/f/, /�/, /b/, /v/, /ð/, /m/� of PA07 differs from the HE set
only by one addition consonant /m/. However, the other two
sets are quite different in the two experiments. Such distinct
sets were not observed in the Pe�SNR� curves of MN55,
except for the nasals /m/, /n/, which had the lowest errors in
MN55, consistent with the LE set.

For comparing our scores with the original Miller–
Nicely experiment, we find the SNRs required to achieve the
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same score in the two experiments. These SNRs, i.e.,
SNRMN55�Pe� and SNRMN05�Pe�, obtained for a range of Pe

values, are plotted against each other to obtain the isoperfor-
mance SNR contours in Fig. 2�a�. For those Pe values which
fall between the measures Pe values, the SNRs are estimated
by linearly interpolating the Pe�SNR� curves. The dashed
curves with markers represent individual consonants, while
the thick dash-dotted curve corresponds to the average per-
formance. The thin dashed “reference” line with a slope of
45° corresponds to identical performance in the two experi-
ments. A consonant curve above this dashed line implies that
the higher SNR was required in MN05 �ordinate� than in
MN55 �abscissa� to achieve the same performance for that
consonant. In other words, the consonants that have curves
above the reference line have poorer performance in MN05
than in MN55, at a given SNR. A curve below the reference
line indicates a better performance in MN05 than in MN55.
The proximity of the average performance curve �thick dash
dotted� to the reference line in Fig. 2�a� implies that the
average consonant performance in MN05 was almost equal
to that in MN55. On average, LE and AE consonants per-
formed better, while HE consonants performed slightly
worse in MN05 as compared to MN55.

Figure 2�b� shows a similar comparison between MN05
�WN� and PA07 �SWN�. There is a 10–12 dB uniform dif-
ference between the average scores �dash-dotted line�. All
consonants have poorer performance in WN relative to
SWN, but the precise difference in the performance depends
on consonant and varies with SNR. The consonants in set C2
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FIG. 2. �Color online� The isoperfor-
mance SNR contours for comparing
MN05 scores with �a� MN55, and �b�
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from PA07 �i.e., /s/, /b/, /z/, /c/, and /t/� have the largest de-
crease in performance in MN05 with respect to the PA07
performance. This is expected, because these consonants had
highest scores in speech-weighted noise, due to high-
frequency energy �PA07�. The frequencies above 2 kHz have
significantly higher masking in WN than in SWN, resulting
in poorer scores for these high-frequency fricatives. On the
other hand, consonants /v/, /m/ �both set C1�, and /n/ �set C3�
have the least decrease in performance, as most of the energy
for these consonants is concentrated at low frequencies
where the spectra of the two noises are not very different.

1. AI

Allen �2005b� showed that the consonant log errors �i.e.,
Pe�AI� on log scale� for the MN55 data are linear functions
of the AI, following the exponential model:

Pe�AI� = echanceemin
AI , �1�

from Allen �1994�, where emin is minimum error �at AI=1�
and echance is the chance performance error �at AI=0�. In this
case, echance=1−1 /16=15 /16. Figure 3�a� shows that the av-
erage consonant log error �thick solid line� in MN05 also
linearly decreases with AI, in accordance with the model.

Equation �1�, which is based on Fletcher’s band-
independence theory, was defined only for average speech
�Fletcher and Galt, 1950; Allen �2005a��. However, the lin-
earity of individual consonant curves in Fig. 3�a� demon-
strates that the model also works for individual consonants,
as previously observed by Allen �2005b� and PA07. It fol-
lows that the log-error curves for consonants can be ex-
pressed as
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Pe�AI,Ci� � echanceemini

AIi , �2�

where emini
, and AIi are the emin and the AI values, respec-

tively, for consonant Ci.
The three consonant sets are more obvious on an AI

scale than on a SNR scale �Fig. 3�. Figure 3�b� shows that
not only average consonant log error �gray� but also the log
errors for sets HE and AE are also linear functions of AI. The
curvature in the Pe�AI� for set LE is due to only one of the
two consonants in that set, viz., /m/. The log�Pe�AI�� curves
for 13 out of the 16 consonants can be matched to straight
lines with very LE. This shows that the exponential AI model
can be extended beyond the average consonant score, to con-
sonant groups, and even individual consonants.

The average consonant error is a Bayesian sum of indi-
vidual consonant errors and therefore, according to Eq. �2�,
can be expressed as a sum of exponential functions of AI,
with different bases �i.e., the emini

values�.

Pe�AI� = �
i=1

16

Pe�AI,Ci� � echance�
i=1

16

emini

AIi . �3�

Combining the two expressions for Pe�AI� from Eqs. �1� and
�3� results in

emin
AI � �

i=1

16

emin,ci

AICi . �4�

A sum of exponentials cannot be an exponential, unless the
bases are equal, but in this case the approximation fits well.

Figure 4 shows the consonant scores for the three differ-
ent experiments, on SNR, and AI scales. The Pc�AI� curves
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AI FIG. 3. �Color online� �a� The conso-

nant errors Pe�AI�=1− Pc�AI� on a log
scale plotted as a function of AI. The
AI values were calculated at each
SNR, except for the quiet condition,
where the exact SNR was not known.
�b� The average consonant error �gray�
and the average errors for LE, AE, and
HE sets. The solid curves are the em-
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bars indicating the standard deviations
within the sets, while the dash-dotted
lines are the predictions of the expo-
nential AI model �Eq. �1��.
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are closer to each other than Pc�SNR� curves. This is because
the differences in the noise spectra are accounted for by the
AI, thus aligning the Pc�AI� curves for speech-weighted and
WN. In spite of the same noise type, the AI values for MN55
and MN05 are not identical for a give SNR. The differences
are due to the speech spectra and peak-to-rms ratios used in
the AI calculation for the two experiments.

The AI values for MN05 were estimated by using the
following PA07 formula.

AI =
1

K
�
k=1

K

min	1

3
log10�1 + rk

2snrk
2�,1
 , �5�

where snrk is the SNR and rk is the peak-to-rms ratio �both in
linear units, not in decibels� in the kth band, out of total K
=20 articulation bands. The AI values for each consonant are
estimated by using the average speech spectrum and average
peak-to-rms ratios for that consonant. The details of calcu-
lating rk values can be found in Appendix A of PA07. In this
case, the peak-to-rms ratios varied from 2.19 ��6.89 dB� for
/n/ in the 645–795 Hz articulation band to 6.65 ��16.45 dB�
for /d/ in the 5720–7000 Hz band. Figure 5 compares peak-
to-rms ratios �rk� from the current study to those for the VCV
syllables from Grant and Walden �1996� �GW96� study and
with the rk values reported by Fletcher and Galt �1950�
�FG50�. The rk values reported by FG50 were derived from
the conversational speech data of Dunn and White �1940�
and are frequently used as a standard for peak-to-rms correc-
tion in calculating AI �Pavlovic, 1984; Rankovic, 2002�. The
rk values of MN05 and GW96 are lower than the FG50 val-
ues. The peak-to-rms ratios for GW96 are lower than those
for MN05 below 3 kHz. This may be because GW96 stimuli
�VCV� had two vowels per consonant, while MN05 stimuli
�CV� had only one vowel per consonant. The steady and
strong vowel formants, which dominate the envelope at these
lower frequencies, significantly contribute to the rms value,
but not so much to the peak value. The resultant would be
lower peak-to-rms ratios for VCVs than for CVs. All three
curves shows a significant variation in rk over frequency,
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mated by Fletcher and Galt �1950� �FG50�. The 16 dashed curves show rk

values for individual consonants, estimated from the CV tokens used in
MN05. The means and standard deviations of rk values for MN05 and Grant
and Walden �1996� �GW96� stimuli are shown by the solid curves with error
bars. The horizontal dash-dotted line shows the constant 12 dB peak-to-rms
ratio used by French and Steinberg �1947� �FS47�.
contrary to the claim by French and Steinberg �1947� that
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rk�12 dB, constant across frequency �horizontal dashed
line�. They made no claims regarding the variation in rk

across consonants. The dashed curves, which represent indi-
vidual consonant, show that there is up to 5 dB variation in
the rk values over consonants, especially at higher frequen-
cies.

Figure 6 shows a comparison of AI values, as a function
of SNR, for the three experiments. The AI values for MN05
and PA07 were calculated using the spectra and peak-to-rms
ratios that were directly estimated from the speech and noise
stimuli. Since the speech and noise for MN55 was not avail-
able, the AI values for MN55 were calculated by using the
straight-line approximation to the Dunn and White �1940�
speech spectrum and a constant, frequency-independent
peak-to-rms ratio of rk=2 �Allen �2005b��. At a given SNR,
MN05 AI is higher that of the MN55 AI. This difference is
predominantly due to the differences in peak-to-rms ratios,
rather than the differences in the speech spectra. When the AI
values for MN05 are calculated using a constant rk=1.7, the
average AI curve for MN05 coincides with the MN55 curve.

C. Consonant confusions

We use confusion patterns �CPs� �Allen �2005a�� to ana-
lyze the consonant confusions. A CP for a speech sound is
obtained by plotting the row of that sound in CM against the
SNR. Unlike the tabular form of CM, the formation of con-
sonant groups over a range of SNRs can be directly observed
in the CP. The confusion groups are not obvious in a CM
table without a specific order of rows and columns, while the
CPs do not depend on row and column orders. For example,
consider the CP for consonant /t/ from the MN55 data shown
in Fig. 7. Each curve corresponds to a particular column
entry �h� for the /t/ row, plotted as a function of SNR,
namely, Ph�/t/�SNR�. The horizontal dashed line indicates
chance, defined as the probability of guessing, which is 1 /16.
The diagonal entry P/t/�/t/�SNR�, denoted by �, increases
with SNR. As the SNR decreases, confusions of /t/ with /p/
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curve, when extrapolated by using a third order polynomial fit, reaches AI
=1 at about 21 dB SNR. The quiet condition �Q�, which has AI=1 by
definition, is plotted at this SNR.
��� and /k/ ��� increase and eventually become equal to the
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target for SNRs below −8 dB. We say that /t/, /p/, and /k/
form a confusion group �or perceptual group� at �or near� the
confusion threshold, indicated by �SNRg�1�−8 dB, where
�SNRg�1 is the point of local maximum in P/p/�/t/�SNR� and
P/k/�/t/�SNR� curves. When the SNR is decreased below
�SNRg�2�−15 dB, consonant group �/f/, /�/, /s/, and /b/�
merges with the �/t/, /p/, /k/� group, forming a supergroup.
Since �SNRg�2� �SNRg�1, consonants �/p/, /k/� are perceptu-
ally closer to /t/, and thereby form a stronger perceptual
group with /t/ than the consonants �/f/, /�/, /s/, and /b/�. Thus
we use the confusion threshold SNRg as a quantitative mea-
sure to characterize the hierarchy in the perceptual confu-
sions.

Figure 8�a� shows all 16 CPs for noise-masking data
from MN55. Many confusion groups are not symmetrical.
For example, the confusion of /�/ with /f/ �� in second row,
left panel� is significantly greater than confusion of /f/ with
/�/ �� in top right panel�. Thus, the /f/-/�/ confusion group is
biased toward /f/. Allen �2005b� symmetrized the CMs, as-
suming these asymmetries to be insignificant. While the
asymmetries for the /p/-/t/-/k/ and /m/-/n/ groups �the ex-
amples considered in Allen �2005b�� are negligible, for other
confusion groups in MN55, such as the /f/-/�/ group, these
asymmetries are significant. These asymmetries are impor-
tant for understanding the perceptual grouping of consonant
under noisy conditions. Therefore, the CM should not be
symmetrized.

Figure 8�b� shows the same 16 consonant CPs for
MN05. These CPs are generated from the CM tables listed in
the Appendix. The present experiment consonant confusions
for plosives and nasals are very similar to those in MN55.
The strong /p/-/t/-/k/, /d/-/g/-/z/ and /m/-/n/ confusion groups
are common between the two experiments. However, the
confusion thresholds in MN05 are at lower SNRs than those
in MN55, indicating that the white noise has greater masking
in MN55 than MN05. Part of this difference may be due to
differences in the definition of SNR in the two experiments.
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FIG. 7. Confusion patterns �CPs� for s= / ta/ from �MN55�. The thick solid
line without markers is 1− P/b/�/t/�SNR�, which is the sum of off-diagonal
entries. The horizontal dashed line shows the chance level of 1 /16. Weak
competitors, which do not exceed the chance performance, are shown by the
gray square symbols.
To set the SNR in MN05, both speech and noise levels were
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digitally measured by using a software VUMETER, whereas in
MN55, the noise level �rms� was electrically measured and
the speech level �peak� was measured by using a VUMETER

instrument. Other possible factors, which cannot be tested
with current data, could be the differences in speech stimuli
�live talkers versus recorded� and familiarity of listeners with
talkers in MN55.

A striking difference between the two experiments is
observed in the fricative CPs. In MN55, consonants have
negligible voicing errors, i.e., the unvoiced consonants have
unvoiced competitors �hollow symbols� and the voiced con-
sonants have voiced competitors �filled symbols�. The un-
voiced fricatives form /f/-/�/ and /s/-/b/ groups and their
voiced counterparts have the corresponding /v/-/ð/ and /z/-/c/
groups. These MN55 fricative groups are across place, but
not across the voicing. In contrast, the fricatives in MN05
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FIG. 8. The 16 consonant confusion patterns �CPs� for �a� the noise-
masking data from �MN55� and �b� MN05. The horizontal dashed line
shows the chance performance probability of 1 /16. The weak competitors
�i.e., Ph�s�SNRg��1 /16� are grayed out for better visualization of the con-
fusion groups. The quiet condition in MN05 �Q� is plotted at +21 dB SNR.
show significant voicing errors, but these voicing confusions
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are biased in favor of voicing. That is, the strongest competi-
tors for unvoiced consonants �hollow symbols� are voiced
consonants �filled symbols�, but not vice versa. For example,
/s/ and /b/ are only confused with /z/ and /c/, respectively, but
/z/ and /c/ are hardly confused with any unvoiced consonant.
The voiced fricative /v/ forms no confusion group with the
unvoiced counterpart /f/ �in Ph�/i/�, but it is one of the stron-
gest competitors of /f/ �in Ph�/f/�. An interesting behavior is
observed for consonant /ð/ in MN05. It is confused with /�/,
but only at SNR above 0 dB. At lower SNRs, it forms con-
fusion groups with /v/ and /z/.

In MN55, consonants /p/ and /k/ form a stronger confu-
sion group with each other than with /t/. Comparatively, the
/p/-/t/-/k/ group is more symmetrical in MN05 and the three
consonants equally compete with each other. In MN05, /p/
forms a weak group with /f/, but not with /�/. Thus, MN05
data show /p/-/f/ and /f/-/�/ groups, but do not show the
/p/-/f/-/�/ group from MN55. Similarly, /b/-/v/ and /v/-/ð/
groups are observed in MN05, but not the /b/-/v/-/ð/ group
from MN55. On the other hand, some place confusions from
MN05, such as /f/-/b/ and /v/-/m/, are not observed in MN55.

1. AI

As shown in Sec. I, the log-error curves Pe�SNR� for
individual consonants become linear on an AI scale �i.e.,
log�Pe�AI��=AI log�emin�+log�echance��. In this section, we
investigate how the abscissa transformation from SNR to AI
impacts the confusion patterns. Figure 9 shows the CPs for
consonants /b/, /d/, and /g/, as a function of SNR �left� and
AI �right�. On the SNR scale, the consonant log errors �thick
solid lines� have significant curvature. The slope of log-error
curve changes as the number of competitors decreases with
increasing SNR. The nonlinear SNR to AI transformation
compresses the higher confusion regions into a small AI
range. On AI scale, all confusion thresholds in the consonant
CPs are compressed to AI�0.2. The remaining range of AI
from 0.2 to 1 has only a small number of competitors, with
linearly decreasing log confusions �i.e., log of the off-
diagonal elements�. The resultant is a linearly decreasing log
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FIG. 9. The present experiment CPs for consonants /b/ �top�, /d/ �center�,
and /g/ �bottom�, as a function of SNR �left� and AI �right�.
error for the consonant.
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D. Utterance variability

The availability of the confusion data for individual ut-
terance allows us to analyze the utterance variability. In
PA07, the utterance CPs were not analyzed because the row
sums were too small to reliably analyze a 64�64 CM or
even the 16�16 CM. In MN05, the number of listeners is
more than twice the number of listeners in PA07, which
gives relatively smoother CPs. The row sums for individual
utterances in MN05 are slightly greater than the number of
listeners �i.e., 23� because some utterances were presented
more than once in a block to minimize listener guessing.

There is a significant variation in the recognition scores
of different utterances of the same CV. Equally interesting
and more complex are the variations observed in the distri-
bution of confusions errors. We cannot directly attribute
these variations to either the talker variability or to the
within-talker utterance variability because only one utterance
of a CV was available from each talker in the LDC database.

The variations in the utterance CPs can be broadly clas-
sified into two categories. First is the confusion heterogene-
ity, where the competitors in the confusion group vary from
utterance to utterance. Second is threshold variability, where
the confusion group remains the same, but the SNR and con-
fusion probability at the confusion threshold are utterance
dependent.

1. Confusion heterogeneity

The top row of Fig. 10 shows CPs for three different
utterances of /fÄ/. In each case, /f/ is confused with different
consonants. Talker m104’s /f/ is confused mostly with /n/ and
somewhat with /p/, while m111 /f/ is confused with /�/ and
/s/. Utterance m112 /f/ forms only one but strong confusion
group with /b/ and /v/. The bottom row of Fig. 10 shows CPs
for three utterances of /nÄ/. While utterance f108 /n/ forms
confusion groups with /d/ and /g/, m118’s /n/ is almost solely
confused with /m/. Talker m114’s /n/ is very robust with no
errors at SNR�−6 dB, and below that SNR it has no strong
competitor, but many weak competitors that never exceed a
15% confusion probability.

Morphing. When a confusion significantly exceeds the
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FIG. 10. Examples of confusion heterogeneity. The top row shows CPs for
three utterances of /fa/: m104 �left�, m111 �center�, and m112 �right�. The
bottom row shows CPs for three utterances of /na/: f108 �left�, m118 �cen-
ter�, and m114 �right�. �m: male; f: female�.
recognition of the presented sound, such as that top left
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�m104 /fÄ/� and top right panels �m112 /fÄ/� of Fig. 10, we
denote it as morphing. The target sound may be morphed
into one or more other sounds by the noise masker. For ex-
ample, while m104 /f/ is morphed to /m/, talker m112’s /f/
has a double morphing toward /b/ and /v/. Not all utterances
of a given consonant show morphing. Therefore, morphing is
not observed in the average consonant CPs, shown in Fig. 8,
which are obtained by pooling the data over utterances. In-
formal experiments show that at the crossover SNR, where
the target and the competitor have equal scores, a listener can
prime between two sounds.2 If the target sound is presented
in a meaningful word or sentence at the same SNR, then the
priming would be resolved by context.

2. Threshold variability

On average, consonant /s/ is exclusively confused with
/z/ in MN05 �see Fig. 8�b�, second row, second column�,
with an average confusion threshold SNRg=−12 dB and a
confusion probability P/z/�/s/�SNRg��20%. However, indi-
vidual utterance CPs of /sÄ/ show a significant variation in
the location of confusion threshold �Fig. 11�. For talker f119,
the threshold is at −12 dB with P/z/�/s/�SNRg��25%, while
for m111, it is at 0 dB with P/z/�/s/�SNRg��65%. The confu-
sion threshold for talker f105’s utterance is between the two.
Thus for the same confusion group, the threshold can vary
from a minor confusion to a morph, depending on the utter-
ance.

Noise robustness. Talker m111’s /sÄ/ has more confu-
sions, compared to f119 �Fig. 11�. This means that m111 /sÄ/
is less robust to noise than f119 /sÄ/. To quantify the “robust-
ness” of an utterance, we define a saturation point, denoted
by SNR90. This point forms a “knee” in the recognition score
of the utterance, i.e., below SNR90, the score rapidly de-
creases, while above SNR90, the recognition score saturates.
We quantify the saturation point SNR90 as the SNR where
Pc�SNR90�=90%. If the score for an utterance is always less
than 90%, then SNR90=� is assigned to it. Thus, a lower
SNR90 indicates a greater robustness to noise. In Fig. 11,
f119 /sÄ/ �SNR90=−3.55 dB� is more noise robust than
f105’s utterance �SNR90=4.25 dB�, while m111 /sÄ/
�SNR90=�� is the weakest of the three.

The noise robustness of a sound depends on the masking
noise spectrum. A quantitative analysis of SNR90 further sup-
ports the observations drawn from Fig. 2�b�, that the conso-
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FIG. 11. Examples of threshold variability. CPs for three utterances of /sa/
by talkers f119 �left�, f105 �center�, and m111 �right�. SNRg denotes the
/s/-/z/ group confusion threshold. SNR90 denotes the saturation point for /s/
recognition, where the diagonal score is 90%.
nants are more robust to SWN �PA07 dataset� than WN
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�MN05 dataset�. Out of 192 common utterances, 174 utter-
ances have SNR90�WN��SNR90�SWN�, 14 have
SNR90�WN��SNR90�SWN� and four have the same SNR90

in both experiments. In WN data of MN05, 17 utterances
have SNR90=�, compared to only eight in the SWN data of
PA07. Four of these utterances �three /�/ and one /ð/� have
SNR90=� in both experiments.

IV. DISCUSSION

We have repeated the MN55 experiment using comput-
erized techniques and a digitally recorded database. With few
notable exceptions, the average consonant scores �Fig. 2�a��
and the consonant confusion patterns �Fig. 8� of MN05
closely match with those from the original �MN55�. This
verifies that these “modern” computer based testing proce-
dures can reliably reproduce the classic CM experiments. It
also implies that the differences observed between PA07 and
MN55 are due to differences in speech materials and noise
spectra and not due to the procedural factors such as use of
computers, digital filters, and a prerecorded database.

The consonant confusions of plosives and nasals in
MN05 are virtually identical to those from MN55. However,
the significant voicing confusions for fricatives, observed
earlier in PA07 �SWN� were not present in MN55 �WN�, but
are present in MN05 �WN�. Therefore, these confusions can-
not be attributed to the differences in noise spectra between
PA07 and MN55. These confusions were highly asymmetric,
biased in favor of the voiced fricatives. Similar confusions
are also observed in the Grant and Walden �1996� �GW96�
acoustic-only data in SWN, and therefore cannot be attrib-
uted to our testing procedures and stimuli. These high voic-
ing errors are responsible for the HE consonant sets, which
contain fricatives /f/, /�/, /v/, and /ð/, in the three experiments
�PA07; MN05; and GW96�, but not in MN55. One reason for
low voicing errors by MN55 could be the familiarity of the
listeners with the talker’s voice. In MN55, the five listeners
also served as the talkers, i.e., when one spoke the syllables,
the other four listened and scored. There were no noticeable
systematic differences in consonant scores, voicing scores,
and consonant confusions for male and female talker utter-
ances in MN05. Therefore, it is unlikely that the differences
in MN05 and MN55 are due to the use of male talkers in
MN05.

The isoperformance SNR contours �Fig. 2� are particu-
larly useful when comparing performance across two differ-
ent noise types. A comparison of WN �present experiment�
and SWN �PA07� data shows that the difference in the noise
spectra induces a constant SNR-loss of about 10–12 dB in
WN, with respect to SWN �Fig. 2�b��. The noise spectrum
also impacts the distribution of consonant errors, resulting in
different consonant sets in the two experiments. This further
supports the conclusion of Phatak and Allen �2007� that con-
sonants /s/, /b/, /z/, /c/, and /t/ have the greatest advantage in
SWN. These consonants have lower scores in WN �present
experiment; MN55�. The consonants /m/, /n/, and /v/ are al-
most equally masked by both types of noises. This is in

agreement with the SNR-spectra analysis from PA07. The
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three consonant sets observed in MN05 are the LE set
�/m/, /n/�, the AE set �/p/, /t/, /k/, /s/, /b/, /d/, /g/, /z/, /c/�, and
the HE set �/f/, /�/, /b/, /v/, /ð/�.

The average recognition error in MN05 obeys the expo-
nential AI model of speech recognition, given by Eq. �2�.
This model was introduced by Fletcher, and was shown to fit
the average scores of isolate syllables �CV, VC, and CVC�
�Fletcher and Galt �1950��. Allen �1994� first expressed this
relationship in terms of the minimum error emin �i.e., the
error at AI=1� and showed that the model can be extended to
the individual consonant errors of the data of MN55 �Allen
�2005b��. The exponential AI model fits the error for indi-
vidual consonants as well as for the three consonant sets in
MN05 �Fig. 3�. The log-error curves are linear in AI, relative
to SNR, which can be partially explained by the CPs �Fig. 9�.
When plotted as a function of AI, the confusions in the con-
sonant CPs are restricted to AI�0.2. As a result, the log of
consonant error becomes more linear on AI scale than on
SNR scale. As previously observed by Allen �2005b�, the
SNR-to-AI transformation also makes the log confusions
�i.e., log�Ph�s�, the off-diagonal entries� more linear. Thus, it
is possible to model the entire CM, not just the AE, in terms
of AI.

Unlike the popular sigmoidal or ogive approximations of
the performance-intensity curve PC�SNR�, the AI-model pa-
rametrization of the recognition performance has a solid the-
oretical psychoacoustic basis. Several standards for measur-
ing speech quality, such the speech intelligibility index �SII�
�ANSI-S3.5-1997, 1997� and the speech transmission index
�Steeneken and Houtgast, 1980�, are based on French and
Steinberg’s method of estimating AI. Allen �2005b� refined
the original expression of French and Steinberg �1947� for
estimating AI, to formulate a threshold correction to the AI,
and showed that the AI is similar to the Shannon �1948�
formula for channel capacity of a communication channel
�Allen, 2004�. However, this refined expression had a free
parameter, which was later demonstrated by PA07 to be
equal to the frequency-dependent peak-to-rms ratio of
speech. The resulting AI expression �Eq. �5�� is explicitly
computable from the speech and noise stimuli, and thus is
completely independent of free parameters. This AI is
equivalent to the loudness, audibility, speech recognition
model of Studebaker et al. �1994�, which is estimated from
the peak spectrum of speech and rms spectrum of noise. As a
result, the consonant recognition scores across experiments
match better on the AI scale than on the SNR scale �Fig. 4�.
This is because the AI accounts for relative spectral shapes of
speech and noise spectra, which are ignored in the wideband
SNR calculation.

The CPs for individual utterances �Figs. 10 and 11� are
not as smooth as the consonant CPs �Fig. 8�b�� due to lower
row sums �N�. After the utterance and listener selection, row
sums for the consonant CPs range from 162 to 485 re-
sponses. In comparison, the typical N for utterance CPs is
equal to number of listeners �i.e., 23� because each utterance
was presented only once at each SNR to each listener. At low
SNRs, when there are multiple competitors, the probability
distribution in a row is multimodal. With a low N, the esti-

mation error is relatively high, and thus multimodal distribu-
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tions cannot be accurately estimated. However, at high
SNRs, when there are a small number of competitors, the
curves become relatively smooth. Thus, in spite of the low N,
the confusion groups and the utterance variability analysis
reveal useful results. All published CM data are pooled over
listeners and talkers to reduce variance and to obtain an “av-
erage response.” However, the variations across speech utter-
ances and listener responses provide rich information, such
as the morphing phenomenon, which is obscured by such
averaging.

The utterance variability could not be analyzed either
with MN05 data due to lack of stimuli or with PA07 data due
to very low row sums. Thus, one of the aims for conducting
MN05 was to investigate whether the utterance variations are
random or systematic. The analysis of utterance confusion
patterns shows that these variations are not only systematic
but also can be quantitatively characterized into two types—
confusion heterogeneity and threshold variability.

Morphed utterances provide a unique opportunity to bet-
ter understand speech perception. The morphing phenom-
enon is also observed in a time-truncation experiment, where
the CV syllables are gated from the consonant side �Régnier
and Allen, 2008�. For example, when a /sÄ/ utterance is trun-
cated from consonant side, it first morphs into a /zÄ/. When
truncated further, it first morphs to /dÄ/ and then to /ðÄ/, until
only vowel is perceived. The truncation time at which an /s/
morphs to /z/ is consistent with the voice-onset time of a
natural /z/. When a natural /zÄ/ utterance is truncated, it also
morphs first to /dÄ/ and then to /ðÄ/, but it never morphs to
/sÄ/. This is consistent with the asymmetric /s/-/z/ confusions
observed in WN �present experiment� and SWN �PA07�
masking data. This asymmetry suggests that the set of per-
ceptual features or events that define consonant /z/ is a subset
of those which define /s/. Thus, when the additional features
in /s/ are masked or truncated, it is confused with, and in
many cases morphs to, the consonant /z/, but /z/ is never
confused with /s/. Comparing the /s/ utterance morphed into
/z/ with a natural /z/ utterance can reveal these additional
features in /s/ which distinguish it from /z/.

Consonants /p/ and /t/ form another pair that show this
asymmetric morphing. Ten out of the 12 /tÄ/ utterances
tested in the time-truncation experiment morphed to /pÄ/, but
none of the /pÄ/ utterances morphed to /tÄ/ �Régnier, 2007�.
The individual utterance CPs for WN �present experiment�
and SWN �PA07� masking data also significantly show more
/t/ to /p/ morphing than /p/ to /t/ morphing, in terms of both
the number of morphed utterances and the probability of
morphing �i.e., Ph�s�SNRg��. This results in the average
P/p/�/t/�SNRg� �� in top left panel of Fig. 8�b�� to be lower
than the average P/t/�/p/�SNRg� �� top row, second panel
from left�. Thus, the event set for /p/ is a subset of the event
set for /t/. Régnier �2007� show, by using time-frequency
modification experiments, that the high-frequency release
burst for /t/ is the event which separated /t/ from /p/. This
result is consistent with the prediction by Heil �2003� that the
envelope onset cues are critically important for speech intel-
ligibility. This prediction is based on the neural data, which
provides a physiological basis to the peak-to-rms ratio-based

AI. The peak-to-rms ratios account for these perceptually
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important temporal variations in speech, thus giving a tem-
poral perspective to the otherwise spectral AI metric. An AI
that accounts for the speech peaks can predict the recognition
scores better than the ANSI-S3.5-1969 �1969� standard AI
�Rankovic, 1998�, and has led to the recent SII standard
ANSI-S3.5-1997 �1997�. The speech peaks are also critically
important in extending the AI to predict speech intelligibility
in fluctuating noise �Rhebergen and Versfeld, 2005�.

Some utterances of a given sound are more robust to
noise than others �Fig. 11�. A quantitative analysis of the
noise robustness, using the saturation point SNR90, revealed
that consonants are more robust to speech-weighted noise
than WN. Noise-robustness analysis, combined with a spec-
trotemporal analysis of the stimuli, can lead us to the percep-
tual coding of speech. For example, Régnier and Allen
�2008� found that SNR90 of /t/ utterances are highly corre-
lated with the intensity of the transient in the release burst.
Such a quantitative correlation would not be possible without
the quantitative measures of CPs �i.e., SNRg and SNR90�.
Régnier and Allen �2008� also found that the event �i.e., the
across-frequency coincidence of energy onset� is invariant,
and it is the acoustic correlate �i.e., the intensity of the onset
transient� which is responsible for the threshold variability.
Similarly, it is likely that the confusion heterogeneity �Fig.
10� is due to differences in the relative intensities of the
acoustic correlates of invariant events.

An alternative explanation for the heterogeneity is lis-
tener bias. If a listener narrows down the heard sound to a
subset of possible choices, but is not confidant about the
answer, then the response may be determined by the listen-
er’s bias for a specific answer. Such listener biases would
dominate the responses in noisy conditions, where weak ut-
terances are not clearly perceptible. This hypothesis can be
easily tested by analyzing the consistency of listener re-
sponses to these utterances at low SNRs. However, such an
analysis is not possible with the current data, as each utter-
ance was presented only once or twice to each listener, at a
given SNR. We have collected such data on listener consis-
tency and this analysis is in progress.

V. CONCLUSIONS

The most important conclusions of this study can be
briefly summarized as follows.

�1� The results of the classic Miller and Nicely �1955� can
be reliably reproduced by using a recorded speech data-
base and modern computerized testing procedures. The
differences in the consonant data of Phatak and Allen
�2007� �speech-weighted noise� and MN55 �white noise�
are primarily due to different noise spectra.

�2� A normal-hearing listener’s perception of consonants is
more robust to speech-weighted noise than white noise.
The noise robustness of an utterance can be quantified by
using a saturation point �Fig. 11�. Consonants /s/, /b/, /z/,
/c/, and /t/ have the most disadvantage in white noise
compared to speech-weighted noise, while consonants
/v/, /m/, and /n/ are least affected by this difference in

noise spectrum �Fig. 2�b��.
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�3� An AI calculated from the specific speech and noise
stimuli, by using PA07 AI formula �Eq. �5��, was verified
to satisfy the exponential AI model �Eq. �1�� for conso-
nant errors in white noise. The model can be extended to
individual consonants as well as the consonant groups
�Fig. 3�.

�4� Masking noise cannot only reduce the recognition of a
consonant, but also perceptually morph it into another
consonant.

�5� In the presence of masking noise, fricatives show highly
asymmetric voicing confusions, biased in favor of
voiced consonants. MN55 data are an exception.

�6� There is a significant and systematic variability in the
scores and confusion patterns of different utterances of
the same consonant, which can be characterized as �a�
confusion heterogeneity, where the competitors in the
confusion groups of a consonant vary �Fig. 10�, and �b�
threshold variability, where confusion threshold �i.e.,
SNR and score at which the confusion group is formed�
varies �Fig. 11�.
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APPENDIX

Tables II–IX show the consonant CMs, pooled over ut-
terances and listeners, after the utterance and listener selec-
tion. The “only noise” responses, listed in the last column
labeled 	, were considered to be chance performance re-
sponses and were distributed uniformly over the remaining
16 columns. These CMs were row normalized to have unity
row sums for plotting the confusion patterns in Fig. 8�b�. The
SNR of −21 dB was rarely presented to the listeners due to
their low scores at −18 dB SNR, resulting in very low row
sums �8�N�22� and high variability at −21 dB SNR.
Therefore, data at −21 dB SNR were not used in plotting the
CPs and the corresponding CM is not listed here.

Since there were 18 talkers of each CV and 23 listeners,
the row sums should be 414. However, as described in Sec.
II, two randomly chosen CVs were repeated in each block
�i.e., same SNR, same talker� to limit guessing by the lis-
tener. These extra presentations make the row sums greater
than 414. Consonants /f/, /�/, /v/, /ð/, and /z/ have row sums
lower 414. This is because these consonants occurred most
frequently in the ambiguous utterances and their row sums
decreased after removing responses to ambiguous utterances.

1The experiment was called UIUCs04 by Phatak and Allen �2007�, as it
was conducted at the University of Illinois at Urbana-Champaign �UIUC�
in the summer of 2004.

2For a priming condition between choices A and B, the listener will answer
“Yes” with 100% probability to both questions-“Do you hear A?” and “Do

you hear B?”
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TABLE II. Consonant CM table. Quiet condition.

Quiet /p/ /t/ /k/ /f/ /
/ /s/ /�/ /b/ /d/ /g/ /v/ /ð/ /z/ /c/ /m/ /n/ �

/p/ 457 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
/t/ 0 469 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0
/k/ 0 3 476 0 0 0 0 0 0 2 0 0 0 0 0 0 0
/f/ 0 1 0 386 5 0 0 0 0 0 1 4 0 0 0 0 0
/
/ 0 0 0 5 202 4 0 0 0 0 0 20 0 0 0 0 0
/s/ 0 0 0 0 1 429 0 0 0 0 0 1 3 0 0 0 0
/�/ 0 0 0 0 0 3 459 0 0 0 0 0 0 6 0 0 0
/b/ 5 0 0 1 0 0 0 405 0 0 6 0 0 0 0 0 0
/d/ 0 0 0 0 0 0 0 0 463 4 0 0 0 0 0 0 0
/g/ 0 0 2 0 0 0 0 0 0 462 0 0 0 0 0 0 0
/v/ 0 0 0 2 2 0 0 5 0 0 367 8 1 0 0 0 0
/ð/ 0 0 0 0 19 0 0 0 0 0 3 133 0 0 0 0 0
/z/ 0 0 0 0 0 0 0 0 0 0 0 3 378 6 0 0 0
/c/ 0 0 0 0 0 0 4 0 0 0 0 0 2 412 0 0 0
/m/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 468 0 0
/n/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 463 0
TABLE III. Consonant CM table. SNR=12 dB.

12 dB /p/ /t/ /k/ /f/ /
/ /s/ /�/ /b/ /d/ /g/ /v/ /ð/ /z/ /c/ /m/ /n/ �

/p/ 463 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0
/t/ 4 460 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0
/k/ 0 0 474 0 0 0 0 0 0 2 0 0 0 0 0 0 0
/f/ 5 0 0 341 3 0 0 27 0 0 22 0 0 1 0 0 0
/
/ 0 0 0 15 159 3 0 9 0 0 3 48 0 0 0 0 0
/s/ 0 0 0 0 0 429 0 0 0 0 0 0 12 0 0 0 0
/�/ 0 0 0 0 0 0 445 0 0 0 0 0 0 22 0 0 0
/b/ 4 0 0 20 0 0 0 369 0 0 23 0 0 0 0 0 0
/d/ 0 0 0 0 0 0 0 0 472 2 0 0 0 0 0 0 0
/g/ 0 0 2 0 0 0 0 0 2 467 0 0 0 0 0 0 0
/v/ 0 0 0 2 0 0 0 57 0 20 332 1 0 0 0 0 0
/ð/ 0 0 0 0 29 0 0 1 2 0 5 112 2 0 0 0 0
/z/ 0 0 0 0 1 1 0 0 0 0 1 7 377 5 0 0 0
/c/ 0 0 0 0 0 0 2 0 0 1 0 0 3 413 0 0 0
/m/ 0 0 0 0 0 0 0 0 0 0 1 0 0 3 465 2 0
/n/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 458 0
TABLE IV. Consonant CM table.SNR=6 dB.

6 dB /p/ /t/ /k/ /f/ /
/ /s/ /�/ /b/ /d/ /g/ /v/ /ð/ /z/ /c/ /m/ /n/ �

/p/ 454 6 3 4 2 0 0 1 0 0 0 0 0 0 0 0 0
/t/ 9 455 11 1 3 0 0 1 0 0 0 2 0 0 0 0 0
/k/ 3 6 466 1 0 0 1 0 1 2 0 0 0 0 0 0 0
/f/ 15 1 0 282 5 2 0 50 0 1 37 4 0 0 2 0 1
/
/ 2 0 0 22 133 4 0 15 4 0 4 51 0 0 0 0 0
/s/ 0 1 0 1 4 398 2 0 0 0 0 1 28 1 0 0 0
/�/ 0 0 0 0 1 1 430 0 0 0 0 0 0 37 0 0 0
/b/ 13 0 1 54 2 0 0 272 0 0 66 5 0 0 0 0 0
/d/ 0 0 0 0 1 0 0 0 459 11 0 3 0 2 0 0 0
/g/ 0 0 2 0 0 0 0 0 13 447 0 1 0 0 0 0 0
/v/ 0 0 0 1 0 0 0 76 0 1 299 3 0 0 3 0 0
/ð/ 0 0 0 0 26 0 0 0 6 2 14 88 9 0 0 6 0
/z/ 0 0 0 0 1 9 0 0 6 0 1 7 351 8 0 0 0
/c/ 0 0 0 0 0 0 1 0 0 2 0 0 1 401 0 0 0
/m/ 0 0 0 0 0 0 0 0 0 0 1 0 0 3 465 6 0
/n/ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 473 0
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TABLE V. Consonant CM table. SNR=0 dB.

0 dB /p/ /t/ /k/ /f/ /
/ /s/ /�/ /b/ /d/ /g/ /v/ /ð/ /z/ /c/ /m/ /n/ �

/p/ 390 14 21 22 2 0 0 4 0 0 1 3 0 0 0 0 0
/t/ 41 368 54 4 2 2 0 1 0 0 0 3 0 0 0 0 0
/k/ 44 25 376 2 10 1 3 1 1 2 1 6 0 0 0 0 0
/f/ 35 1 3 226 14 3 0 59 1 1 33 3 0 0 5 2 1
/
/ 3 5 4 33 84 11 0 27 8 4 7 52 0 0 0 0 0
/s/ 0 0 0 4 14 364 2 1 0 0 7 8 50 1 0 0 0
/�/ 0 0 0 0 3 17 382 0 6 0 0 0 4 55 0 0 0
/b/ 15 0 1 74 5 0 0 220 0 0 76 8 0 2 6 0 0
/d/ 1 0 0 0 2 0 1 0 402 35 0 10 1 7 0 0 0
/g/ 0 0 1 0 8 1 2 2 44 409 0 10 1 7 0 0 0
/v/ 1 1 0 8 0 0 0 87 0 1 276 9 0 1 14 4 0
/ð/ 0 2 0 1 16 0 0 2 17 4 25 69 15 7 0 4 0
/z/ 0 0 0 0 1 12 0 0 6 3 0 5 350 9 0 0 0
/c/ 0 0 0 0 0 1 2 0 0 11 1 0 3 383 0 2 0
/m/ 1 0 0 0 0 0 0 1 0 0 2 0 0 0 453 14 0
/n/ 0 0 0 0 0 1 0 0 1 1 0 0 0 0 6 454 0
TABLE VI. Consonant CM table. SNR=−6 dB.

−6 dB /p/ /t/ /k/ /f/ /
/ /s/ /�/ /b/ /d/ /g/ /v/ /ð/ /z/ /c/ /m/ /n/ �

/p/ 287 46 83 24 7 0 1 10 0 3 6 1 0 1 3 5 0
/t/ 114 208 101 19 7 0 0 1 2 2 2 3 0 1 5 1 0
/k/ 86 59 252 18 9 3 1 5 2 10 5 7 0 1 3 6 0
/f/ 43 10 6 146 20 4 1 66 2 5 62 16 2 1 11 2 0
/
/ 5 15 14 30 63 5 2 21 10 16 18 34 3 1 1 0 0
/s/ 0 2 1 10 18 313 3 8 5 1 7 10 56 6 0 0 0
/�/ 0 1 0 0 12 21 268 1 26 5 0 7 16 99 0 2 0
/b/ 24 4 4 67 16 0 0 170 8 1 88 14 3 2 5 1 1
/d/ 0 0 0 0 11 7 6 3 281 51 4 35 21 38 1 5 0
/g/ 0 3 7 4 14 6 5 6 82 246 8 49 17 28 0 2 0
/v/ 13 2 5 14 8 2 0 68 3 3 229 18 1 1 29 2 0
/ð/ 1 7 0 0 8 3 1 4 8 6 34 34 15 15 5 9 0
/z/ 0 4 0 1 5 13 1 0 14 7 2 8 287 39 0 3 0
/c/ 1 1 1 2 2 0 14 0 16 30 2 15 16 301 1 11 0
/m/ 3 3 3 2 3 0 0 6 0 0 8 5 0 0 394 32 0
/n/ 0 0 1 0 1 0 1 1 8 3 0 0 0 2 24 436 1
TABLE VII. Consonant CM table. SNR=−12 dB.

−12 dB /p/ /t/ /k/ /f/ /
/ /s/ /�/ /b/ /d/ /g/ /v/ /ð/ /z/ /c/ /m/ /n/ �

/p/ 183 57 107 31 8 3 0 16 2 3 12 5 3 1 26 7 0
/t/ 103 122 116 25 10 6 1 12 8 15 17 8 3 4 12 9 0
/k/ 81 100 126 19 18 7 1 19 12 10 16 14 3 3 18 25 4
/f/ 51 23 30 65 15 11 3 71 8 11 50 14 4 6 21 8 1
/
/ 23 19 26 45 18 7 3 21 11 13 22 14 5 2 3 4 1
/s/ 5 11 14 23 15 212 15 5 10 5 11 12 82 16 5 5 3
/�/ 3 22 18 13 21 26 110 7 47 20 7 23 41 91 3 10 9
/b/ 36 8 14 41 10 9 1 106 25 12 92 12 10 5 27 3 0
/d/ 5 15 12 3 14 11 13 25 135 51 17 29 47 49 14 18 0
/g/ 5 21 16 11 24 20 10 24 81 85 30 45 32 43 5 22 0
/v/ 21 9 6 17 7 10 3 72 15 12 124 25 12 7 32 15 3
/ð/ 8 8 6 10 5 2 0 11 13 9 22 20 15 11 10 13 1
/z/ 4 12 5 5 8 21 11 10 41 24 16 24 145 53 4 6 1
/c/ 6 7 6 6 7 9 22 12 44 41 25 16 44 120 12 31 2
/m/ 23 10 13 13 2 1 2 25 7 10 24 11 4 4 263 51 0
/n/ 6 7 12 3 6 4 3 4 22 22 12 16 4 14 57 274 1
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